Фикоцианин из Sp. platensis: таксономия, структура и свойства, медицинское применение (обзор)
https://doi.org/10.33380/3034-3925-2025-2-1-13
Аннотация
Введение. Фикоцианин - это натуральный пигмент синего цвета, содержащийся в спирулине, который обладает антиоксидантными, противовоспалительными, противовирусными и противоопухолевыми свойствами.
Текст. Фикобилипротеины, являющиеся основными компонентами светособирающих комплексов у цианобактерий и красных водорослей, имеют в своем составе хромофоры (фикобилины), которые ковалентно связаны с белковыми субъединицами и отвечают за поглощение света. Эти комплексы образуют фикобилисомы, способные эффективно собирать и передавать энергию света к реакционным центрам фотосинтеза. Экстракция фикоцианина требует выбора подходящего метода разрушения клеток, чтобы извлечь белок, сохранив его структуру и функции. Для этой цели могут применяться как физические, так и химические методы. Последующая очистка включает в себя несколько этапов, в ходе которых происходит удаление балластных белков и других примесей. Она может включать в себя фракционирование сульфатом аммония и набор хроматографических методов. Важным аспектом является контроль качества, который осуществляется с использованием спектрофотометрии. Стабильность фикоцианина может меняться под воздействием различных факторов окружающей среды, таких как свет, температура и pH. Для повышения его устойчивости используются стабилизаторы, в роли которых могут выступать моно- и дисахариды, а также неорганические соли. Фикоцианин обладает широким спектром полезных свойств для организма: антиоксидантной активностью, противовоспалительным действием, защитой органов и тканей, а также противоопухолевым эффектом. Он практически не оказывает токсического действия даже при высоких дозах, что открывает широкие перспективы для разработки новых лекарственных средств.
Заключение. Фикоцианин является перспективным веществом для медицинского применения. Тем не менее существуют сложности, связанные с его извлечением, очисткой и стабилизацией. Чтобы расширить область его применения, требуются дальнейшие исследования, направленные на разработку более эффективных методов получения и стабилизации.
Об авторах
К. А. ШабановРоссия
119571, г. Москва, пр-т Вернадского, д. 86
А. В. Панов
Россия
119571, г. Москва, пр-т Вернадского, д. 86
В. В. Суслов
Россия
119571, г. Москва, пр-т Вернадского, д. 86
С. А. Кедик
Россия
119571, г. Москва, пр-т Вернадского, д. 86
Список литературы
1. Squires A. H., Moerner W. E. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proceedings of the National Academy of Sciences. 2017;114(37):9779-9784. DOI: 10.1073/pnas.1705435114.
2. Kim K. M., Lee J. Y., Im A.-R., Chae S. Phycocyanin protects against UVB-induced apoptosis through the PKC a/eiI-Nrf-2/HO-1 dependent pathway in human primary skin cells. Molecules. 2018;23(2):478. DOI: 10.3390/molecules23020478.
3. Kubatka P., Kapinova A., Kruzliak P., Kello M., Vybohova D., Kajo K., Novak M., Chripkova M., Adamkov M., Pec M., Mojzis J.,. Bojkova B, Kassayova M., Stoliarova N., Dobrota D. Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model. Nutrition. 2015;31(4):560-569. DOI: 10.1016/j.nut.2014.08.010.
4. Sathya R., MubarakAli D., MohamedSaalis J., Kim J.-W. A systematic review on microalgal peptides: bioprocess and sustainable applications. Sustainability. 2021;13(6):3262. DOI: 10.3390/su13063262.
5. Furmaniak M. A., Misztak A. E., Franczuk M. D., Wilmotte A., Waleron M., Waleron K. F. Edible cyanobacterial genus Arthrospira: actual state of the art in cultivation methods, genetics, and application in medicine. Frontiers in Micro-biology. 2017;8:2541. DOI: 10.3389/fmicb.2017.02541.
6. Wu H.-L., Wang G.-H., Xiang W.-Z., Li T., He H. Stability and antioxidant activity of food-grade phycocyanin isolated from Spirulina platensis. International Journal of Food Properties. 2016;19(10):2349-2362. DOI: 10.1080/10942912.2015.1038564.
7. Pagnussatt F. A., Del Ponte E. M., Garda-Buffon J., Badiale-Furlong E. Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pesticide Biochemistry and Physiology. 2014;108:21-26. DOI: 10.1016/j.pestbp.2013.11.002.
8. Zhang Z., Li J., Wang X., Shen D., Chen L. Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin. ACS Applied Materials & Interfaces. 2015;7(17):9118-9127. DOI: 10.1021/acsami.5b00908.
9. Kedik S. Ya., Yartsev E. I., Sakaeva I. V. Influence of Spirulina and its components on the immune system. Russian Journal of Biopharmaceutical. 2014;3(3):3-10. (In Russ.)
10. Taniguchi M., Lindsey J. S. Absorption and fluorescence spectra of open-chain tetrapyrrole pigments-bilirubins, biliverdins, phycobilins, and synthetic analogues. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2023;55:100585. DOI: 10.1016/j.jphotochemrev.2023.100585.
11. Kannaujiya V. K., Rastogi R. P., Sinha R. P. GC constituents and relative codon expressed amino acid composition in cyanobacterial phycobiliproteins. Gene. 2014;546(2):162-171. DOI: 10.1016/j.gene.2014.06.024.
12. Sonani R. R., Gupta G. D., Madamwar D., Kumar V. Crystal structure of allophycocyanin from marine cyanobacterium Phormidium sp. A09DM. PLOS ONE. 2015;10(4):e0124580. DOI: 10.1371/journal.pone.0124580.
13. Stadnichuk I. N., Kusnetsov V. V. Phycobilisomes and phycobiliproteins in the pigment apparatus of oxygenic photosynthetics: From cyanobacteria to tertiary endosymbiosis. International Journal of Molecular Sciences. 2023;24(3):2290. DOI: 10.3390/ijms24032290.
14. Pagels F., Guedes A. C., Amaro H. M., Kijjoa A., Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances. 2019;37(3):422-443. DOI: 10.1016/j.biotechadv.2019.02.010.
15. Anwer K., Sonani R., Madamwar D., Singh P., Khan F., Bisetty K., Ahmad F., Hassan Md. I. Role of N-terminal residues on folding and stability of C-phycoerythrin: Simulation and ureainduced denaturation studies. Journal of Biomolecular Structure and Dynamics. 2013;33(1): 121—133. DOI: 10.1080/07391102.2013.855144.
16. MacColl R. Cyanobacterial phycobilisomes. Journal of Structural Biology. 1998;124(2-3):311-334. DOI: 10.1006/jsbi.1998.4062.
17. Li W., Su H.-N., Pu Y., Chen J., Liu L.-N., Liu Q., Qin S. Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnology Advances. 2019;37(2):340-353. DOI: 10.1016/j.biotechadv.2019.01.008.
18. Adir N., Bar-Zvi S., Harris D. The amazing phycobilisome. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2020;1861(4):148047. DOI: 10.1016/j.bbabio.2019.07.002.
19. Sobiechowska-Sasim M., Ston-Egiert J., Kosakowska A. Quantitative analysis of extracted phycobilin pigments in cyanobacteriaan assessment of spectrophotometric and spectrofluorometric methods. Journal of Applied Phycology. 2014;26(5):2065-2074. DOI: 10.1007/s10811-014-0244-3.
20. Stadnichuk V. N., Krasilnikov P. M., Zlenko D. V. Phycobilisomes and phycobiliproteins of cyanobacteria. Microbiology. 2015;84(2):131-143. (In Russ.) DOI: 10.7868/S0026365615020159.
21. Marx A., David L., Adir N. Piecing together the phycobilisome. In: Hohmann-Marriott M. F., editor. The Structural Basis of Biological Energy Generation. New York: Springer; 2014. P. 59-76. DOI: 10.1007/978-94-017-8742-0_4.
22. Dagnino-Leone J., Figueroa M., Mella C., Vorphal M. A., Kerff F., Vasquez A. J., Bunster M., Martmez-Oyanedel J. Structural models of the different trimers present in the core of phycobilisomes from Gracilaria chilensis based on crystal structures and sequences. PLOS ONE. 2017;12(5):e0177540. DOI: 10.1371/journal.pone.0177540.
23. Watanabe M., Ikeuchi M. Phycobilisome: Architecture of a light-harvesting supercomplex. Photosynthesis Research. 2013;116:265-276. DOI: 10.1007/s11120-013-9905-3.
24. Singh N. K., Sonani R. R., Rastogi R. P., Madamwar D. The phycobilisomes: An early requisite for efficient photosynthesis in cyanobacteria. EXCLI Journal. 2015;14:268-289. DOI: 10.17179/excli2014-723.
25. Ma J., You X., Sun S., Wang X., Qin S., Sui S.-F. Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature. 2020;579:146-151. DOI: 10.1038/s41586-020-2020-7.
26. Jiang H.-W., Ho M.-Y. Isolation and characterization of intact phycobilisome in cyanobacteria. Journal of Visualized Experiments. 2021;177. DOI: 10.3791/63272.
27. Ducret A., Muller S. A., Goldie K. N., Hefti A., Sidler W. A., Zuber H., Engel A. Reconstitution, characterisation and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. Journal of Molecular Biology. 1998;278(2):369-388. DOI: 10.1006/jmbi.1998.1678.
28. Onishi A., Aikawa S., Kondo A., Akimoto S. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence. Photosynthesis Re-search. 2015;125:191-199. DOI: 10.1007/s11120-015-0089-x.
29. Zheng L., Zheng Z., Li X., Wang G., Zhang K., Wei P., Zhao J., Gao N. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. Nature Communications. 2021;12:5497. DOI: 10.1038/s41467-021-25813-y.
30. Zlenko D. V., Krasilnikov P. M., Stadnichuk I. N. Structural modeling of the phycobilisome core and its association with the photosystems. Photosynthesis Research. 2016;130:347-356. DOI: 10.1007/s11120-016-0264-8.
31. Tan H. T., Yusoff F. M., Khaw Y. S., Noor Mazli N. A. I., Nazarudin M. F., Shaharuddin N. A., Katayama T., Ahmad S. A. A review on a hidden gem: Phycoerythrin from blue-green algae. Marine Drugs. 2023;21(1):28. DOI: 10.3390/md21010028.
32. Kilimtzidi E., Cuellar Bermudez S., Markou G., Goiris K., Vandamme D., Muylaert K. Enhanced phycocyanin and protein content of Arthrospira by applying neutral density and red light shading filters: A small-scale pilot experiment. Journal of Chemical Technology & Biotechnology. 2019;94(6):2047-2054. DOI: 10.1002/jctb.5991.
33. Sivasankari S., Vinoth M., Ravindran D., Baskar K., Alqarawi A. A., Abd_Allah E. F. Efficacy of red light for enhanced cell disruption and fluorescence intensity of phycocyanin. Bioprocess and Biosystems Engineering. 2021;44:141-150. DOI: 10.1007/s00449-020-02430-5.
34. Grebert T., Garczarek L., Daubin V., Humily F., Marie D., Ratin M., Devailly A., Farrant G. K., Mary I., Mella-Flores D., Tanguy G., Labadie K., Wincker P., Kehoe D. M., Partensky F. Diversity and evolution of pigment types in marine Synechococcus cyanobacteria. Genome Biology and Evolution. 2022;14(4):evac035. DOI: 10.1093/gbe/evac035.
35. Akimoto S., Yokono M., Hamada F., Teshigahara A., Aikawa S., Kondo A. Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2012;1817(8):1483-1489. DOI: 10.1016/j.bbabio.2012.01.006.
36. Yan S.-G., Zhu L.-P., Su H.-N., Zhang X.-Y., Chen X.-L., Zhou B.-C., Zhang Y.-Z. Single-step chromatography for simultaneous purification of C-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis. Journal of Applied Phycology. 2011;23:1-6. DOI: 10.1007/s10811-010-9525-7.
37. Rizzo R. F., do Nascimento Correia dos Santos B., da Silva de Castro G. F. P., Passos T. S., de Abreu Nascimento M., Dantas Guerra H., Guidone da Silva C., da Silva Dias D., Domingues J. R., Gomes de Lima-Araujo K. Production of phycobiliproteins by Arthrospira platensis under different lightconditions for application in food products. Food Science and Technology (Campinas). 2015;35(2):247-252. DOI: 10.1590/1678-457X.6463.
38. George R., John J. A. Phycoerythrin as a potential natural colorant: A mini review. International Journal of Food Science & Technology. 2023;58(2):513-519. DOI: 10.1111/ijfs.16229.
39. Dommguez-Martm M. A., Sauer P. V., Kirst H., Sutter M., Brna D., Greber B. J., Nogales E., PoKvka T., Kerfeld C. A. Structures of a phycobilisome in light-harvesting and photoprotected states. Nature. 2022;609:835-845. DOI: 10.1038/s41586-022-05156-4.
40. Glazer A. N., Apell G. S., Hixson C. S., Bryant D. A., Rimon S., Brown D. M. Biliproteins of cyanobacteria and Rhodophyta: Homologous family of photosynthetic accessory pigments. Proceedings of the National Academy of Sciences. 1976;73(2):428-431. DOI: 10.1073/pnas.73.2.428.
41. Glazer A. N. Structure and evolution of photosynthetic accessory pigment systems with special reference to phycobiliproteins. The Evolution of Protein Structure and Function. 1979;221-244. DOI: 10.1016/B978-0-12-643150-6.50021-X.
42. Liu L.-N., Chen X.-L., Zhang Y.-Z., Zhou B.-C. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2005;1708(2):133-142. DOI: 10.1016/j.bbabio.2005.04.001.
43. Glazer A.N. Light guides: Directional energy transfer in a photosynthetic antenna. Journal of Biological Chemistry. 1989;264(1):1-4. DOI: 10.1016/S0021-9258(17)31212-7.
44. Grossman A. R., Schaefer M. R., Chiang G. G., Collier J. L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiological Reviews. 1993;57(3):725-749. DOI: 10.1128/mr.57.3.725-749.1993.
45. Sui S.-F. Structure of phycobilisomes. Annual Review of Biophysics. 2021;50(1):53-72. DOI: 10.1146/annurev-biophys-062920-063657.
46. Rast A., Schaffer M., Albert S., Wan W., Pfeffer S., Beck F., Plitzko J. M., Nickelsen J., Engel B. D. Biogenic regions of cyanobacterial thylakoids form contact sites with the plas-ma membrane. Nature Plants. 2019;5(4):436-446. DOI: 10.1038/s41477-019-0399-7.
47. Frank H. A., Robert B., Croce R., van Grondelle R., van Amerongen H., van Stokkum I. Pigments: General properties and biosynthesis. In: Croce R., van Grondelle R., van Amerongen H., van Stokkum I., editors. Light Harvesting in Photosynthesis. Boca Raton: CRC Press; 2018. P. 3-20.
48. Sanfilippo J. E., Nguyen A. A., Garczarek L., Karty J. A., Pokhrel S., Strnat J. A., Partensky F., Schluchter W. M., Kehoe D. M. Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proceedings of the National Academy of Sciences. 2019;116(13):6457-6462. DOI: 10.1073/pnas.1810491116.
49. Ho M.-Y., Soulier N. T., Canniffe D. P., Shen G., Bryant D. A. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Current Opinion in Plant Biology. 2017;37:24-33. DOI: 10.1016/j.pbi.2017.03.006.
50. Manirafasha E., Ndikubwimana T., Zeng X., Lu Y., Jing K. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochemical Engineering Journal. 2016;109:282-296. DOI: 10.1016/j.bej.2016.01.025.
51. Sudhakar M. P., Jagatheesan A., Perumal K., Arunkumar K. Methods of phycobiliprotein extraction from Gracilaria crassa and its applications in food colourants. Algal Research. 2015;8:115-120. DOI: 10.1016/j.algal.2015.01.011.
52. Aftari R. V., Rezaei K., Bandani A. R., Mortazavi A. Antioxidant activity optimization of Spirulina platensis C-phycocyanin obtained by freeze-thaw, microwave-assisted and ultrasound-assisted extraction methods. Quality As-surance and Safety of Crops & Foods. 2017;9(1):1-9. DOI: 10.3920/qas2015.0708.
53. Chiong T., Acquah C., Lau S. Y., Khor E. H., Danquah M. K. Microalgal-based protein by-products: Extraction, purification, and applications. In: Protein Byproducts. Transformation from Environmental Burden Into Value-Added Pro-ducts. New York: Academic Press; 2016. P. 213-234. DOI: 10.1016/B978-0-12-802391-4.00012-4.
54. Enamala M. K., Enamala S., Chavali M., Donepudi J., Yadavalli R., Kolapalli B., Aradhyula T. V., Velpuri J., Kuppam C. Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews. 2018;94:49-68. DOI: 10.1016/j.rser.2018.05.012.
55. Colla L. M., Bertol C. D., Ferreira D. J., Bavaresco J., Costa J. A. V., Bertolin T. E. Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder. Brazilian Journal of Biology. 2017;77(2):332-339. DOI: 10.1590/1519-6984.14315.
56. Wu X.-J., Yang H., Chen Y.-T., Li P.-P. Biosynthesis of fluorescent в subunits of C-phycocyanin from Spirulina subsalsa in Escherichia coli, and their antioxidant properties. Molecules. 2018;23(6):1369. DOI: 10.3390/molecules23061369.
57. Mazo V. K., Biryulina N. A., Sidorova Yu. S. Arthrospira platensis: antioxidant, hypoglycemic and hypolipidemic effects in vitro and in vivo. Problems of Nutrition. 2022;91(4):19-25. (In Russ.)
58. Patil G., Chethana S., Sridevi A. S., Raghavarao K. S. M. S. Method to obtain C-phycocyanin of high purity. Journal of Chromatography A. 2006;1127(1-2):76-81. DOI: 10.1016/j.chroma.2006.05.073.
59. Campos Assumpção de Amarante M., Simões Corrêa Júnior L. C., Sala L., Kalil S. J. Analytical grade C-phycocyanin obtained by a single-step purification process. Process Biochemistry. 2020;90:215–222. DOI: 10.1016/j.procbio.2019.11.020.
60. Falkeborg M. F., Roda-Serrat M. C., Burnæs K. L., Nielsen A. L. D. Stabilising phycocyanin by anionic micelles. Food Chemistry. 2018;239:771–780. DOI: 10.1016/j.foodchem.2017.07.007.
61. Scheer H., Kufer W. Conformational studies on C-phycocyanin from Spirulina platensis. Zeitschrift fur Naturforschung C. 1977;32(7-8):513-519. DOI: 10.1515/znc-1977-7-806.
62. Burgess R. R. Protein precipitation techniques. In: Methods in Enzymology. Amsterdam: Elsevier; 2009;463:331-342. DOI: 10.1016/S0076-6879(09)63020-2.
63. S0rensen L., Hantke A., Eriksen N. T. Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. Journal of the Science of Food and Agriculture. 2013;93(12):2933-2938. DOI: 10.1002/jsfa.6116.
64. Kumar D., Wattal Dhar D., Pabbi S., Kumar N., Walia S. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian Journal of Plant Physiology. 2014;19:184-188. DOI: 10.1007/s40502-014-0094-7.
65. Liu S., Chen Y., Lu Y., Chen H., Li F., Qin S. Biosynthesis of fluorescent cyanobacterial allophycocyanin trimer in Escherichia coli. Photosynthesis Research. 2010;105:135-142. DOI: 10.1007/s11120-010-9574-4.
66. Adjali A., Clarot I., Chen Z., Marchioni E., Boudier A. Physicochemical degradation of phycocyanin and means to improve its stability: A short review. Journal of Pharmaceutical Analysis. 2022;12(3):406-414. DOI: 10.1016/j.jpha.2021.12.005.
67. Kupka M., Scheer H. Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions: 1. Equilibrium experiments. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2008;1777(1):94-103. DOI: 10.1016/j.bbabio.2007.10.009.
68. Chaiklahan R., Chirasuwan N., Bunnag B. Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry. 2012;47(4):659-664. DOI: 10.1016/j.procbio.2012.01.010.
69. Bocker L., Ortmann S., Surber J., Leeb E., Reineke K., Mathys A. Biphasic short time heat degradation of the blue microalgae protein phycocyanin from Arthrospira platensis. Innovative Food Science & Emerging Technologies. 2019;52:116-121. DOI: 10.1016/j.ifset.2018.11.007.
70. Aoki J., Sasaki D., Asayama M. Development of a method for phycocyanin recovery from filamentous cyanobacteria and evaluation of its stability and antioxidant capacity. BMC Biotechnology. 2021;21:40. DOI: 10.1186/s12896-021-00692-9.
71. Yuan B., Li Z., Shan H., Dashnyam B., Xu X., McClements D. J., Zhang B., Tan M., Wang Z., Cao C. A review of recent strategies to improve the physical stability of phycocyanin. Current Research in Food Science. 2022;5:2329-2337. DOI: 10.1016/j.crfs.2022.11.019.
72. Ilter I., Akyil S., Demirel Z., Ko? M., Conk-Dalay M., Kaymak-Ertekin F. Ilter I. Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis. 2018;70:78-88. DOI: 10.1016/j.jfca.2018.04.007.
73. Pan-utai W., Iamtham S. Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry. 2019;82:189-198. DOI: 10.1016/j.procbio.2019.04.014.
74. Tavandanhi H. A., Raghavarao K. S. M. S. Ultrasound-assisted enzymatic extraction of natural food colorant C-phycocyanin from dry biomass of Arthrospira platensis. LWT. 2020;118:108802. DOI: 10.1016/j.lwt.2019.108802.
75. Zhao X., Zhang H., Xiang H., Yu D., Gao M., Yan R., Zhang D. A nature pH indicator with high colorimetric response sensitivity for pork freshness monitoring. Food Bioscience. 2024;57:103519. DOI: 10.1016/j.fbio.2023.103519.
76. Antelo F. S., Costa J. A. V., Kalil S. J. Thermal degradation kinetics of the phycocyanin from Spirulina platensis. Biochemical Engineering Journal. 2008;41(1):43-47. DOI: 10.1016/j.bej.2008.03.012.
77. Patel A., Pawar R., Mishra S., Sonawane S., Ghosh P. K. Kinetic studies on thermal denaturation of C-phycocyanin. Indian Journal of Biochemistry and Biophysics. 2004;41(5):254-257.
78. Choi W. Y., Lee H. Y. Kinetic analysis of stabilizing C-phycocyanin in the Spirulina platensis extracts from ultrasonic process associated with effects of light and temperature. Applied Sciences. 2018;8(9):1662. DOI: 10.3390/app8091662.
79. Escalante F. M. E., Perez-Rico D. A., Alarcon-Jimenez J. L., Gonzalez-Morales E., Guerra-Alvarez L. F., Rami'rez-Vazquez J. C., Gutierrez-Pulido H. Phycocyanin thermophotostability: An accelerated life-test analysis. Journal of the Mexican Chemical Society. 2020;64(3):218-229. DOI: 10.29356/jmcs.v64i3.1157.
80. Munawaroh H. S. H., Gumilar G. G., Alifia C. R., Marthania M., Stellasary B., Yuliani G., Wulandari A. P., Kurniawan I., Hidayat R., Ningrum A., Koyande A. K., Show P.-L. Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochemistry. 2020;94:297-304. DOI: 10.1016/j.procbio.2020.04.021.
81. Martelli G., Folli C., Visai L., Daglia M., Ferrari D. Thermal stability improvement of blue colorant C-phycocyanin from Spirulina platensis for food industry applications. Process Biochemistry. 2014;49(1):154-159. DOI: 10.1016/j.procbio.2013.10.008.
82. Chentir I., Hamdi M., Li S., Doumandji A., Markou G., Nasri M. Stability, bio-functionality and bio-activity of crude phycocyanin from a twophase cultured Saharian Arthrospira sp. strain. Algal Research. 2018;35:395-406. DOI: 10.1016/j.algal.2018.09.013.
83. Cavalcante Braga A. R., da Silva Figueira F., Teixeira da Silveira J., de Morais M. G., Vieira Costa J. A., Kalil S. J. Improvement of thermal stability of c-phycocyanin by nanofiber and preservative agents. Journal of Food Processing and Preservation. 2016;40(6):1264-1269. DOI: 10.1111/jfpp.12711.
84. Faieta M., Neri L., Sacchetti G., Di Michele A., Pittia P. Role of saccharides on thermal stability of phycocyanin in aqueous solutions. Food Research International. 2020;132:109093. DOI: 10.1016/j.foodres.2020.109093.
85. Liu R., Qin S., Li W. Phycocyanin: anti-inflammatory effect and mechanism. Biomedicine & Pharmacotherapy. 2022;153:113362. DOI: 10.1016/j.biopha.2022.113362.
86. Wu Q., Liu L., Miron A., KKmova B., Wan D., Kuca K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology. 2016;90:1817-1840. DOI: 10.1007/s00204-016-1744-5.
87. Fernandez-Rojas B., Hernandez-Juarez J., Pedraza-Chaverri J. Nutraceutical properties of phycocyanin. Journal of Functional Foods. 2014;11:375-392. DOI: 10.1016/j.jff.2014.10.011.
88. Strasky Z., Zemankova L., Nemeckova I., Rathouska J., Wong R. J., Muchova L., Subhanova I., Vanikova J., Vanova K., Vitek L., Nachtigal P. Spirulina platensis and phyco-cyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis. Food & Function. 2013;4(11):1586-1594. DOI: 10.1039/C3FO60230C.
89. Xia D., Liu B., Xin W.,Liu T., Sun J., Liu N., Qin S., Du Z. Protective effects of C-phycocyanin on alcohol-induced subacute liver injury in mice. Journal of Applied Phycology. 2016;28:765-772. DOI: 10.1007/s10811-015-0677-3.
90. Zhang D.-L., J.-H. Wu, Xie L.-M., Liu S.-Q. Molecular mechanism of C-phycocyanin in alleviation of acute lung injury in septic rats. Basic & Clinical Medicine. 2014;34(7):891-895.
91. Liu Y., Jovcevski B., Pukala T. L. C-phycocyanin from Spirulina inhibits a-synuclein and amyloid-в fibril formation but not amorphous aggregation. Journal of Natural Products. 2019;82(1):66-73. DOI: 10.1021/acs.jnatprod.8b00610.
92. Pavon-Fuentes N., Mann-Prida J., Llopiz-Arzuaga A., Falcon-Cama V., Campos-Mojena R., Cervantes-Llanos M., Piniella-Matamoros B., Penton-Arias E., Penton-Rol G. Phycocyanobilin reduces brain injury after endothelin-1-induced focal cerebral ischemia. Clinical and Experimental Pharmacology and Physiology. 2020;47(3):383-392. DOI: 10.1111/1440-1681.13214.
93. Fernandez-Rojas B., Medina-Campos O. N., Hernandez-Pando R., Negrette-Guzman M., Huerta-Yepez S., Pedraza-Chaverri J. C-phycocyanin prevents cisplatin-induced nephrotoxicity through inhibition of oxidative stress. Food Funct. 2014;5(3):480-490. DOI: 10.1039/C3FO60501A.
94. Kumari R. P., Sivakumar J., Thankappan B., Anbarasu K. C-Phycocyanin modulates selenite-induced cataractogenesis in rats. Biological Trace Element Research. 2013;151:59-67. DOI: 10.1007/s12011-012-9526-2.
95. Okamoto T., Kawashima H., Osada H., Toda E., Homma K., Nagai N., Imai Y., Tsubota K., Ozawa Y. Dietary spirulina supplementation protects visual function from photostress by suppressing retinal neurodegeneration in mice. Translational Vision Science & Technology. 2019;8(6):20. DOI: 10.1167/tvst.8.6.20.
96. Berleana R., Rosioru C. L., Tarba C. Effects of Arthrospira (Spirulina) on hematopoiesis in rats. Studia Universitatis Babes-Bolyai, Biologia. 2014;59(2):69-76.
97. Hayashi O., Ono S., Ishii K., Shi Y., Hirahashi T., Katoh T. Enhancement of proliferation and differentiation in bone marrow hematopoietic cells by Spirulina (Arthrospira) platensis in mice. Journal of Applied Phycology. 2006;18:47-56. DOI: 10.1007/s10811-005-9014-6.
98. Hayashi O. Proliferation and differentiation of hematopoietic cells and preservation of immune functions. In: Moschandreou T. E., editor. Blood Cell: An Overview of Studies in Hematology. London: Hematology; 2012. P. 119-146. DOI: 10.5772/48322.
99. Cheng-Wu Z., Chaotsi T., Yuan-Zhen Z. The effects of polysaccharide et phycocyanin from Spirulina platensis variety on peripheral blood and hematopoietic system of bone marrow in mice. In: Second Asia-Pacific Conference on Alga Biotechnology. 25-27 April 1994. P. 58.
100. Braune S., Kruger-Genge A., Kammerer S., Jung F., Kupper J.-H. Phycocyanin from Arthrospira platensis as potential anti-cancer drug: Review of in vitro and in vivo studies. Life. 2021;11(2):91. DOI: 10.3390/life11020091.
101. Patil S., Al-Zarea B. K., Maheshwari S., Sahu R. Comparative evaluation of natural antioxidants spirulina and aloe vera for the treatment of oral submucous fibrosis. Journal of Oral Biology and Craniofacial Research. 2015;5(1):11-15. DOI: 10.1016/j.jobcr.2014.12.005.
102. Ge Y., Kang Y.-K., Dong L., Liu L.-H., An G.-Y. The efficacy of dietary Spirulina as an adjunct to chemotherapy to improve immune function and reduce myelosuppression in patients with malignant tumors. Translational Cancer Research. 2019;8(4):1065-1073. DOI: 10.21037/tcr.2019.06.13.
103. Liu Q., Li W., Qin S. Therapeutic effect of phycocyanin on acute liver oxidative damage caused by X-ray. Biomedicine & Pharmacotherapy. 2020;130:110553. DOI: 10.1016/j.biopha.2020.110553.
104. Gao Y., Liu C., Wan G., Wang X., Cheng X., Ou Y. Phycocyanin prevents methylglyoxal-induced mitochondrial-dependent apoptosis in INS-1 cells by Nrf2. Food & Function. 2016;7(2):1129-1137. DOI: 10.1039/C5FO01548K.
105. Li B., Chu X., Gao M., Li W. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochimica et Biophysica Sinica. 2010;42(1):80-89. DOI: 10.1093/abbs/gmp104.
106. Chen T., Wong Y.-S. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. Journal of Agricultural and Food Chemistry. 2008;56(12):4352-4358. DOI: 10.1021/jf073399k.
107. Roy K. R., Arunasree K. M., Reddy N. P., Dheeraj B., Reddy G. V., Reddanna P. Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicinresistant human hepatocellular-carcinoma cell line HepG2. Biotechnology and Applied Biochemistry. 2007;47(3):159-167. DOI: 10.1042/BA20060206.
108. Bingula R., Dupuis C., Pichon C., Berthon J.-Y., Filaire M., Pigeon L., Filaire E. Study of the effects of betaine and/or C-phycocyanin on the growth of lung cancer A549 cells in vitro and in vivo. Journal of Oncology. 2016;31(1):8162952. DOI: 10.1155/2016/8162952.
109. Li B., Gao M.-H., Chu X.-M., Teng L., Lv C.-Y., Yang P., Yin Q.-F. The synergistic antitumor effects of all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in vitro and in vivo. European Journal of Pharmacology. 2015;749:107-114. DOI: 10.1016/j.ejphar.2015.01.009.
110. Wang H., Liu Y., Gao X., Carter C. L., Liu Z.-R. The recombinant в subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Letters. 2007;247(1):150-158. DOI: 10.1016/j.canlet.2006.04.002.
111. Subhashini J., Mahipal S. V. K., Reddy M. C., Reddy M. M., Rachamallu A., Reddanna P. Molecular mechanisms in C-phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochemical Pharmacology. 2004;68(3):453-462. DOI: 10.1016/j.bcp.2004.02.025.
112. Gardeva E., Toshkova R., Yossifova L., Minkova K., Ivanova N., Gigova L. Antitumor activity of C-phycocyanin from Arthronema africanum (Cyanophyceae). Brazilian Archives of Biology and Technology. 2014;57(5):675-684. DOI: 10.1590/S1516-89132014005000018.
113. Remirez D., Ledon N., Gonzalez R. Role of histamine in the inhibitory effects of phycocyanin in experimental models of allergic inflammatory response. Mediators of Inflammation. 2002;11(2):81-85. DOI: 10.1080/09629350220131926.
114. Liao G., Gao B., Gao Y., Yang X., Cheng X., Ou Y. Phycocyanin inhibits tumorigenic potential of pancreatic cancer cells: role of apoptosis and autophagy. Scientific Reports. 2016;6:34564. DOI: 10.1038/srep34564.
115. Liu Q., Huang Y., Zhang R., Cai T., Cai Y. Medical application of Spirulina platensis derived C-phycocyanin. Evidence-Based Complementary and Alternative Medicine. 2016;2016(1):7803846. DOI: 10.1155/2016/7803846.
Дополнительные файлы
|
1. Графический абстракт | |
Тема | ||
Тип | Исследовательские инструменты | |
Посмотреть
(1MB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Шабанов К.А., Панов А.В., Суслов В.В., Кедик С.А. Фикоцианин из Sp. platensis: таксономия, структура и свойства, медицинское применение (обзор). Гербариум. 2025;2(1):9-22. https://doi.org/10.33380/3034-3925-2025-2-1-13
For citation:
Shabanov K.A., Panov A.V., Suslov V.V., Kedik S.A. Phycocyanin from Sp. platensis: taxonomy, structure and properties, medical application (review). Herbarium. 2025;2(1):9-22. (In Russ.) https://doi.org/10.33380/3034-3925-2025-2-1-13